
Skyline queries

Tecnologie e Sistemi per la Gestione di Basi di Dati e Big Data M

Limits of scoring functions

◼ Although scoring functions are widely used to rank a set of objects, it is
nowadays recognized that they have some major problems:

◼ They have a limited expressive power, i.e., they can only capture those
user preferences that “translates into numbers”, which is not always the
case (or, at least, doing so is not so natural)

“I prefer having white wine with fish and red wine with meat”

◼ Deciding on the “best” scoring function to use and/or the specific weights
can be hardly left to the final user, especially when there are several
ranking attributes

◼ In this set of slides we will study an alternative to scoring functions,
the so-called skyline queries, that have relevant practical applicability,
and also represent a major step towards more general (i.e., powerful)
preference models

2

The concept of tuple dominance

◼ A fundamental concept underlying the definition of skyline queries is that of

◼ The generalization to the case when the values of some attributes need to
be maximized and to arbitrary target points is immediate

3

Tuple dominance:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes,
assume without loss of generality that on each Ai lower values are better.

A tuple t dominates tuple t’ with respect to A = {A1,A2,…,Am}, written t ≻A t’ or
simply t ≻ t’, iff:

j = 1,…,m: t.Aj  t’.Aj  j: t.Aj < t’.Aj

that is:

• t is no worse than t’ on all the attributes, and

• strictly better than t’ for at least one attribute

Notice that it can well be the case that neither t ≻ t’ nor t’ ≻ t hold

Tuple dominance: example (1)

◼ Both Points and Rebounds are to be maximized, thus:
◼ Tracy McGrady dominates all players but Yao Ming and Shaquille O’Neal

◼ Shaquille O’Neal dominates only Yao Ming and Steve Nash

◼ Yao Ming dominates only Steve Nash

◼ Steve Nash does not dominate anyone

◼ …

4

Name Points Rebounds …

Shaquille O'Neal 1669 760 …

Tracy McGrady 2003 484 …

Kobe Bryant 1819 392 …

Yao Ming 1465 669 …

Dwyane Wade 1854 397 …

Steve Nash 1165 249 …

… … … …

Tuple dominance: example (2)

◼ Both attributes are to be minimized, thus:
◼ Car C6 dominate C1 (same mileage, lower price), C3, C4, and C7

◼ Car C5 dominates C1, C2, C4, C7, C8, and C9

◼ Car C11 dominates …

◼ …

5

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

Dominance region

◼ The dominance region of a tuple t is the set of points in Dom(A) that are
dominated by t

◼ Similarly, the anti-dominance region of t is the set of points in Dom(A) that
dominate t
◼ Clearly, t ≻ t’ iff t’ lies in the dominance region of t (and t in the anti-

dominance region of t’)

6

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

The dominance
region of C5

The anti-dominance
region of C2

The dominance graph

◼ We omit transitive dominance relationships from the graph (e.g., C6 ≻ C7)

7

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1 C2

C3

C4

C5

C6

C7

C8

C9

C10C11

C5

C2

C3 C1 C4

C6

C8

C7

C10
C11C9

Skyline queries

◼ Equivalently, t  Sky(R) iff no point in R lies in the anti-dominance region of t

◼ In computational geometry, skyline queries are also known as the “maximal
vectors problem”; for multiple criteria optimization problems, their result is a set
of so-called Pareto optimal solutions

8.1

Skyline of a relation [BKS01]:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes, the
skyline of R with respect to A = {A1,A2,…,Am}, denoted SkyA(R) or simply Sky(R),
is the set of undominated tuples in R:

Sky(R) = {t | t  R, ∄ t’  R: t’ ≻ t}

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf

Skyline queries

◼ Equivalently, t  Sky(R) iff no point in R lies in the anti-dominance region of t

◼ In computational geometry, skyline queries are also known as the “maximal
vectors problem”; for multiple criteria optimization problems, their result is a set
of so-called Pareto optimal solutions

8.2

Skyline of a relation [BKS01]:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes, the
skyline of R with respect to A = {A1,A2,…,Am}, denoted SkyA(R) or simply Sky(R),
is the set of undominated tuples in R:

Sky(R) = {t | t  R, ∄ t’  R: t’ ≻ t}

The Skyline of Manhattan, for instance, can be

computed as the set of buildings which are high

and close to the Hudson river.

In other words, a building dominates another

building if it is higher, closer to the river, and

has the same x position [BKS01]

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf

A skyline example

◼ In the attribute space…
◼ The “skyline profile” shows the

union of the dominance regions
of skyline points

9

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1 C2

C3

C4

C5

C6

C7

C8

C9

C10C11

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p
2

p1

C1C2

C3

C4

C5

C6

C7

C8

C9

C10
C11

◼ In the score space…
◼ No matter how we define

scores, the skyline doesn’t
change!

◼ I.e., the skyline is insensitive to
any “stretching” of coordinates

What’s so special about skyline queries?

◼ Let MD be the set of all monotone distance functions

◼ We have the following result relating skyline and 1-NN queries, when both have
the same target point q:

◼ This is to say that:
1) If t is the (unique) 1-NN for a monotone distance function d,

then t is part of the skyline

2) Conversely, if t is a skyline point, then there exists a monotone distance
function d that is minimized by t only

◼ For this reason, skyline points are also sometimes called “potential NN’s”

◼ Clearly, the same result holds for monotone scoring functions

◼ Note: a non-unique 1-NN is not necessarily undominated (why?)

10

t  Sky(R)  d  MD:  t’  R, t’  t: d(t,q) < d(t’,q)

Proof

1) If t is the unique 1-NN for a monotone distance function d, then t is part of the
skyline

◼ By negating the conclusion.
Assume t is not part of the skyline, i.e., there exists a tuple t’ that dominates t.
For any monotone distance function d it is d(t’,q) ≤ d(t,q), a contradiction.

2) If t is a skyline point, then there exists a monotone distance function that is
minimized by t only

◼ The proof is constructive. Without loss of generality we can take q = 0, and
assume that all attribute values are strictly positive

Consider the weighted L,W distance with weights wi = 1/t.Ai, i=1,…,m.

It is L,W(t,0) = maxi{wi*t.Ai} = 1.

For any other point t’ it is is L,W(t’,0) = maxi{wi*t’.Ai} = maxi{t’.Ai/t.Ai} > 1, since
t is a skyline point

11.1

Proof

1) If t is the unique 1-NN for a monotone distance function d, then t is part of the
skyline

◼ By negating the conclusion.
Assume t is not part of the skyline, i.e., there exists a tuple t’ that dominates t.
For any monotone distance function d it is d(t’,q) ≤ d(t,q), a contradiction.

2) If t is a skyline point, then there exists a monotone distance function that is
minimized by t only

◼ The proof is constructive. Without loss of generality we can take q = 0, and
assume that all attribute values are strictly positive

Consider the weighted L,W distance with weights wi = 1/t.Ai, i=1,…,m.

It is L,W(t,0) = maxi{wi*t.Ai} = 1.

For any other point t’ it is is L,W(t’,0) = maxi{wi*t’.Ai} = maxi{t’.Ai/t.Ai} > 1, since
t is a skyline point

11.2

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

C11

C5

C11: (30,12)

w1 = 1/30
w2 = 1/12

L,W(C11,0) = 1

L,W(C5,0) = max{20/30,20/12}  1.66

C5: (20,20)

“Accessibility” of skyline points

12.1

Name Price Stars

Jolly 10 1

Rome 60 5

Paradise 40 3

S = Ws * Stars – Wp * Price

0

1

2

3

4

5

0 10 20 30 40 50 60

S
ta

rs

Price

Jolly

Rome

Paradise

Hotels

“Accessibility” of skyline points

12.2

Name Price Stars

Jolly 10 1

Rome 60 5

Paradise 40 3

S = Ws * Stars – Wp * Price

0

1

2

3

4

5

0 10 20 30 40 50 60

S
ta

rs

Price

Jolly

Rome

Paradise

◼ For no weights combination Paradise is the top-1 hotel

◼ Similar problems with:
◼ Arbitrary values of k and/or

◼ Almost all scoring functions

Hotels

Skylines do not admit any distance function

◼ The skyline of R does not correspond to any k-NN (or top-k) result, i.e:

Given a schema R(A1,…,Am,…) there is no distance function d
(equivalently, scoring function S) that, on all possible instances of R, yields
in the first k positions the skyline points
◼ Note that here we allow k to be variable, so as to match the actual

number of skyline points on each instance of R

Proof: it is Sky(R’) = {t1,t4}, thus it has to be: {S(t1), S(t4)} > S(t2).

On the other hand, it is Sky(R”) = {t2,t3}, thus: {S(t2),S(t3)} > S(t4), a
contradiction

13

TID p1 p2

t1 0.9 0.6

t2 0.8 0.4

t4 0.5 0.7

TID p1 p2

t2 0.8 0.4

t3 0.7 0.8

t4 0.5 0.7

R’ R’’

Ranking with skylines

◼ Ranking of tuples can be easily obtained by iterating the skyline operator

◼ Define:

◼ Thus Sky0(R) are the “top” tuples, Sky1(R) the “2nd” choices, and so on

14

Sky0(R) = Sky(R)
Sky1(R) = Sky(R – Sky0(R))
Sky2(R) = Sky(R – Sky0(R) – Sky1(R))
…

C5

C2

C3 C1 C4

C6

C8

C7

C10C11C9 Sky0(R) = {C5,C6,C9,C10,C11}

Sky1(R) = {C1,C3,C4,C8}

Sky2(R) = {C2,C7}

◼ The issue of efficiently evaluating a skyline query has been largely investigated,
and many algorithms introduced so far

◼ A basic reason is that the problem is “more difficult” than top-k queries, since it
has a worst-case complexity of (N2) for a DB with N objects

◼ What we see are some algorithms that follow one of the two basic approaches:

Generic:
it computes the skyline without any auxiliary access method (indexes)
◼ Thus, the input relation can also be the output of some other operation

(join, group by, etc.)

Index-based:
it is assumed that an index is available

15

Evaluation of skyline queries

The naïve Nested-Loops (NL) algorithm

◼ The simplest (and very inefficient!) way to compute the skyline of R is to
compare each tuple with all the others

16

ALGORITHM NL (nested-loops)

Input: a dataset R, a set of attributes A inducing ≻

Output: Sky(R), the skyline of R with respect to A

1. Sky(R) := ;

2. for all tuples t in R:

3. undominated := true;

4. for all tuples t’ in R:

5. if t’ ≻ t then: {undominated := false; break}

6. if undominated then: Sky(R) := Sky(R)  {t};

7. return Sky(R);

8. end.

NL: an example

◼ The origin is the target

17

Sky

t1

t6

t8

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 3

t3 3

t4 5

t5 7

t6 7

t7 6

t8 7

Total 45

If t Sky(R), it will always be

compared with all other tuples

The Block-Nested-Loops (BNL) algorithm

◼ The BNL algorithm [BKS01] improves over NL by immediately discarding all
tuples that are dominated by at least one other tuple

◼ Thus, it also avoids comparing twice the same pair of tuples (as NL does)

◼ BNL allocates a buffer (window) W in main memory, whose size is a design
parameter, and sequentially reads the data file

◼ Every new tuple t that is read from the data file is compared with only those
tuples that are currently in W

18

The BNL algorithm has been proposed in
[BKS01] for skyline queries,
however its applicability is far more general!

Donald Kossmann

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf

The logic of the BNL algorithm

◼ When reading a new tuple t, three cases are possible:

◼ When all tuples have been processed, if F is empty the algorithm stops,
otherwise a new iteration is started by taking F as the new input stream

◼ The tuples that were inserted in W when F was empty can be immediately
output, since they have been compared with all other tuples

◼ The others in W can be output during the next iteration; a tuple t can be
output when a tuple t’ is found in F that followed t in the sequential order
◼ For this, a timestamp (counter) is attached to each tuple

19

1) If some tuple t’ in W dominates t, then t is immediately discarded
2) If t dominates some tuple t’ in W, all such tuples are removed from W

and t is inserted into W
3) If none of the above two cases holds, then t is inserted into W.

However, if no space in W is left, then t is written to a temporary file F

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.1

W

F

…

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.2

W

t1

F

…

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.3

W

t1

t2

F

…

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.4

W

t1

t2

F

…

t3

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.5

W

t1

t2t4

F

…

t3

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.6

W

t1

t2t4

F

…

t3

t5

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.7

W

t1

t2t4

F

…

t3

t5

t6

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.8

W

t1

t2t4

F

…

t3

t5

t6

t80

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.9

W

t1

t2t4

F

…

t3

t5

t6

t8

t1

W

t6

2nd iteration

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.10

W

t1

t2t4

F

…

t3

t5

t6

t8

t1

W

t6

t5

2nd iteration

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

BNL: an example

◼ Assume |W| = 2
and the origin as the target

20.11

W

t1

t2t4

F

…

t3

t5

t6

t8

t1

W

t6

t5t8

2nd iteration

t6

t8

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

R

t1

t2

t3

t4

t5

t6

t7

t8

TID
No. of

comparisons

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

1st

For each tuple t only comparisons
with tuples following t in R are counted

Sky

21.1

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

FreshFish

Sunset

VealHere

Country

SteakHouse

W

F

21.2

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView
FreshFish

Sunset

VealHere

Country

SteakHouse

W

F

21.3

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

Country

SteakHouse

W

F

21.4

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

Country

SteakHouse

W

F

21.5

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

Country

SteakHouse

W

F

21.6

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

Country

SteakHouse

W

F

21.7

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

Country

W

F

21.8

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …

Low(Price) and High(Rating)

OceanView

Sunset

VealHere

W

F

BNL: some comments

◼ Experimental results in [BKS01] show that BNL is CPU-bound and that
its performance deteriorates if W grows
◼ Since with larger W BNL executes more comparisons

◼ On the other hand, BNL has a relatively low I/O cost

◼ Performance is also negatively affected by the number of skyline points

◼ The skyline cardinality depends on the number of attributes and on their
correlation
◼ Negatively (or anti-)correlated attributes, like Price and Mileage, lead to

larger skylines

◼ [BKS01] also introduces some variants of BNL, among which BNL-sol, that
manages W as a self-organizing list
◼ The idea is to first compare incoming objects with those in W (called “killer”

objects) that have been found to dominate several other objects

… and another algorithm (D&C) based on a “divide-and-conquer” approach

22

BNL: setting |W| = 1

◼ |W| = 1 yields the minimum number of comparisons for a given input order
(equal to those of |W| =2 in this example)

23

W

t1

F

t2

t3

t4

t5

t6

t7

t8

W

t6

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

TID
No. of

comp.

t1 7

t2 2

t3 1

t4 2

t5 2

t6 2

t7 0

t8 0

Total 16

F

t3

t5

t8

W

t6

F

t5

t8

W

t8

F

t5

1st 2nd 3rd 3rd (end)

t6 can be output during
the 3rd iteration,
just after reading t8

BNL: datasets and experiments (1) [BKS01]

◼ Synthetic data (uniform independent, correlated and anti-correlated)

◼ In the figure: 1000 points (skyline points are in bold)

24

BNL: datasets and experiments (2) [BKS01]

25

▪ RDBMS: the NL algorithm
implemented as a correlated
subquery:

“t is part of the skyline if
NOT EXISTS(…)”

In this figure:
Independent datasets

dimensionality  [2,10]
window = 1Mbyte

cardinality N=105 tuples

Sun Ultra, 333MHz CPU
128Mbytes RAM

N=105 tuples

SFS: Sort-Filter-Skyline [CGG+03]

◼ SFS aims to reduce the overall number of comparisons

◼ To this end, it first performs a topological sort of the input data, which
respects the skyline preference criteria

◼ Here the key observation is:

If the input is topologically sorted,
then a new read tuple cannot dominate

any previously read tuple! (t > t’  t ⊁ t’)

26

Topological sort:

Given ≻, a topological sort of R is a complete (no ties) ordering < of the tuples in
R such that:

t ≻ t’  t < t’

i.e., if t dominates t’, then t precedes t’ in the complete ordering

http://www-db.disi.unibo.it/courses/TBD/papers/CGG+03.pdf

Topological sort: example

◼ For the data in the figure, possible results of a topological sort are:

◼ In practice, a topological sort is obtained by ordering data using a monotone
distance (scoring) function compatible with the skyline criteria

27

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

t6

t4

t2

t3

t1

t8

t7

t5

t8

t5

t6

t1

t4

t7

t3

t2

t1

t6

t4

t7

t8

t3

t2

t5

…sum

t6 40

t8 45

t4 50

t5 55

t1 55

t2 60

t3 60

t7 60

product

t8 350

t6 400

t1 450

t5 600

t4 625

t7 800

t2 875

t3 900

SFS: an example

◼ Assume |W| = 2
and the origin as the target

28.1

W

F

…

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

TID No. of comp.

t6 7

t8 3

t4 0

t5 0

t1 0

t2 0

t3 0

t7 0

Total 10

1st

For each tuple t only comparisons
with tuples following t in the sorted
input are counted

Sky

sum

t6 40

t8 45

t4 50

t5 55

t1 55

t2 60

t3 60

t7 60

SFS: an example

◼ Assume |W| = 2
and the origin as the target

28.2

W

t6

F

…

t6

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

TID No. of comp.

t6 7

t8 3

t4 0

t5 0

t1 0

t2 0

t3 0

t7 0

Total 10

1st

For each tuple t only comparisons
with tuples following t in the sorted
input are counted

Sky

sum

t6 40

t8 45

t4 50

t5 55

t1 55

t2 60

t3 60

t7 60

SFS: an example

◼ Assume |W| = 2
and the origin as the target

28.3

W

t6

t8

F

…

t6

t8

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

TID No. of comp.

t6 7

t8 3

t4 0

t5 0

t1 0

t2 0

t3 0

t7 0

Total 10

1st

For each tuple t only comparisons
with tuples following t in the sorted
input are counted

Sky

sum

t6 40

t8 45

t4 50

t5 55

t1 55

t2 60

t3 60

t7 60

SFS: an example

◼ Assume |W| = 2
and the origin as the target

28.4

W

t6

t8

F

…

t1

t6

W

t1

2nd iteration

t8

t1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

A
2

A1

t1

t2

t3

t4

t5

t6 t7

t8

TID No. of comp.

t6 7

t8 3

t4 0

t5 0

t1 0

t2 0

t3 0

t7 0

Total 10

1st

For each tuple t only comparisons
with tuples following t in the sorted
input are counted

Sky

sum

t6 40

t8 45

t4 50

t5 55

t1 55

t2 60

t3 60

t7 60

SFS: further properties

◼ At the end of each iteration all the tuples in W can be output
◼ since no tuple in W can be discarded by a subsequent tuple

◼ The number of iterations is therefore the minimum one: |Sky(R)|/|W|
◼ In contrast, BNL has no such guarantee

◼ SFS can return a tuple as soon as it is inserted in the window
◼ Therefore, in W one can just store the skyiline attribute values, which

leads to save (much) space

◼ Two non-skyline tuples will never be compared
◼ Since in W only skyline tuples are present

◼ Managing the window data structure is now much easier
◼ Since only insertions are to be supported

◼ No deletion of specific tuples, thus no need to manage empty slots

29

Experimental results (from [CGG+03])

◼ Data sorted using the “entropy” distance function:

d(t,0) = - i=1,m ln(2 - t.Ai)

= - ln(exp(i=1,m ln(2 - t.Ai))) = - ln ( i=1,m(2-t.Ai))

which yields the same ordering as 2m -  i=1,m(2-t.Ai) ( [0,2m – 1])

30

BNL w/RE: input sorted using
the “reverse” entropy

Independent dataset
cardinality N=106 tuples
dimensionality = 7
window = # 4Kbyte pages
AMD Athlon, 900MHz CPU
384Mbytes RAM

SaLSa [BCP06,BCP08]

◼ SaLSa (Sort and Limit Skyline algorithm) extends the ideas of SFS by
observing that, when data are topologically sorted,
it is possible to avoid reading all the input tuples

31

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

Data sorted using sum:
t.Price + t.Mileage

After reading C6 (or C10),
whose sum is 60,
we know that no further skyline
point exists

… however using all the current
points in Sky(R) to this purpose
is costly:
The problem is NP-hard [BCP08]

And?

http://www-db.disi.unibo.it/courses/TBD/papers/BCP06.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/BCP08.pdf

The “stop-point”

◼ SaLSa makes use of a single skyline tuple, the so-called stop-point , tstop, to
determine when execution can be halted

◼ In this case it is sufficient to check that what is still to be read lies in the
dominance region of tstop

32

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

tstop

halt when

sum ≥

C1 75

C2 80

C4 90
75

80

90

Choosing the stop-point

◼ For symmetric distance (scoring) functions, and assuming that on all
coordinates the ranges are the same ([0,1], [0,50], etc.) it is possible to
prove that the optimal choice for the stop-point is given by the rule:

tstop = argmintSKY(R) {maxi{t.Ai}}

that is, the tuple for which the maximum coordinate value is minimum

◼ Note that this holds for any symmetric distance function

33

tstop Price Mileage
halt when sum

≥

C1 25 10 75

C2 20 30 80

C4 5 40 90

Optimally ordering the points

◼ Among the many alternatives to sort the input data, SaLSa uses a
provably optimal criterion, i.e., on each instance ordering data using
another (symmetric) function cannot discard more points

◼ The optimal criterion is called minC (minimum coordinate), that is, for each
tuple t the value of mini{t.Ai} is used

◼ In case of ties, the secondary criterion
“sum” is used

34

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10
minC sum

C4 5

C1 10

C3 15 40

C6 15 60

C10 15 60

C2 20

C5 25

C9 30

C7 35

C8 45

Stopping with minC

◼ The stop-point is C1, for which it is maxi{C1.Ai} = 25

◼ Thus, as soon as it is minC ≥ 25 SaLSa can be halted

◼ The general stop condition is therefore:

35

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il

e
a

g
e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

minC ≥ maxi{tstop.Ai}

minC = 25

Experimental results (from [BCP08]) (1)

◼ FP = fraction of fetched points, independent datasets (vol = SFS)

36

cardinality N  [105,5*105] tuples
dimensionality = 4

cardinality N=5*105 tuples
dimensionality  [2,6]

Experimental results (from [BCP08]) (2)

◼ DT = no. of comparisons (dominance tests), normalized to the cardinality of
the dataset

37

cardinality N  [105,5*105] tuples
dimensionality = 4

cardinality N=5*106 tuples
dimensionality  [2,6]

Experimental results (from [BCP08]) (3)

◼ Mixed dataset = half points are anti-correlated, others are dominated

38

cardinality N = 105 tuples
dimensionality = 4
Data stored and sorted
in IBM DB2
Pentium IV, 3.4GHz CPU
512Mbytes RAM

Computing the skyline with R-trees

◼ If we have an index over the ranking attributes, we can use it to avoid
scanning the whole DB

◼ The BBS (Branch and Bound Skyline) algorithm [PTF+03] is reminiscent of
kNNOptimal, in that it accesses index nodes by increasing values of MinDist
(in the following the query/target point coincides with the origin)
and of next-NN, in that the queue PQ keeps both tuples and nodes
◼ For computational economy, [PTF+03] evaluates distances using L1

(Manhattan distance)

◼ The basic objective of the algorithm is to avoid accessing index nodes that
cannot contain any skyline object

◼ To this end it exploits the following simple observation:

◼ It also exploits the (now well-known) fact that if L1(t’,0) ≥ L1(t,0) then t’ ⊁ t

◼ PQ also stores key(N), i.e., the MBR of N, in order to check if N is dominated by
some tuple t

39

If the region Reg(N) of node N completely lies in the
dominance region of a tuple t, then N cannot contain
any skyline point (“t dominates N”)

t

N

http://www-db.disi.unibo.it/courses/TBD/papers/PTF+03.pdf

The BBS algorithm

40

Input: index tree with root node RN

Output: Sky, the skyline of the indexed data

1. Initialize PQ with [ptr(RN),Dom(R),0]; // starts from the root node

2. Sky := ; // the Skyline is initially empty

3. while PQ ≠ : // until the queue is not empty…

4. [ptr(Elem), key(Elem), dMIN(0,Reg(Elem))] := DEQUEUE(PQ);

5. If no point in Sky dominates Elem then:

6. if Elem is a tuple t then: Sky := Sky  {t}

7. else: { Read(Elem); // …node Elem might contain skyline points

8. if Elem is a leaf then: { for each tuple t in Elem:

9. if no tuple in Sky dominates t then:

10. ENQUEUE(PQ,[ptr(t), key(t), L1(0,key(t))]) }

11. else: { for each child node Nc of Elem:

12. if no point in Sky dominates Nc then:

13. ENQUEUE(PQ,[ptr(Nc), key(Nc), dMIN(0,Reg(Nc))]) }};

14. return Sky;

15. end.

BBS: An example (1/2)

◼ distance: L1

41

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

A
2

A1

N1

A

Elem dMIN

A 7

B 10

C 7

D 11

E 12

F 8

G 9

H 12

I 15

J 16

K 17

N1 5

N2 7

N3 6

N4 7

N5 7

N6 14

B

C

D E

F
G

H

I

J
K

N2

N3

N4

N5

N6

BBS: An example (2/2)

◼ The example clearly shows why a tuple currently undominated, such as B,
which is stored in N3, needs to be inserted into the queue

42

Action PQ

Read(RN) (N1,5) (N2,7)

Read(N1) (N3,6) (N4,7) (N2,7)

Read(N3) (A,7) (N4,7) (N2,7) (B,10)

Return(A) (N4,7) (N2,7) (B,10)

Read(N4) (C,7) (N2,7) (B,10)

Return(C) (N2,7) (B,10)

Read(N2) (N5,7) (B,10)

Read(N5) (F,8) (G,9) (B,10)

Return(F) (G,9) (B,10)

Return(G) (B,10)
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
A

2
A1

N1

A B

C

D E

F
G

H

I

J
K

N2

N3

N4

N5

N6

43

NN BBS

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

2 3 4 5

dimensionality

node accesses

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

2 3 4 5

dimensionality

node accesses

Independent Anti-correlated

 Node accesses vs. d (N=1M)

CPU time (secs)

dimensionality
0

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

2 3 4 5
1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

2 3 4 5

dimensionality

CPU time (secs)

Independent Anti-correlated

 CPU-time vs. d (N=1M)

▪ NN is an algorithm from
[KRR02], also based on R-trees

Experimental setup
Independent (uniform) and
anti-correlated datasets

dimensionality  [2,5]
cardinality N=1M tuples

Node size = 4Kbytes
(C = 204 when d=2;
C = 94 when d=5)

Pentium 4, 2.4GHz CPU
512Mbytes RAM

Experimental results (from [PTF+03])

http://www-db.disi.unibo.it/courses/TBD/papers/KRR02.pdf

Correctness and optimality of BBS

◼ The correctness of BBS is easy to prove, since the algorithm only discards nodes
that are found to be dominated by some point in the Skyline

◼ As SFS and SaLSa, when a tuple t is inserted into Sky, then t is guaranteed to be
part of the final result
◼ This is a direct consequence of accessing nodes by increasing values of

MinDist and of inserting a tuple into Sky only when it becomes the first
element of PQ

◼ Optimality of BBS (which we do not formally prove) means:
BBS only reads those nodes that intersect the “Skyline search region”; this is
the complement of the union of the dominance regions of skyline points

44

0

10

20

30

40

50

60

0 10 20 30 40 50

M
il
e

a
g

e

Price

The Skyline search region

Skylines for low-cardinality domains

◼ In many scenarios, many (possibly all) the attributes of interest can assume only
one out of a few values (e.g., movies’ ratings, presence/absence of a feature,
“predicate preferences”, domain discretization)

◼ Sky(R) = {H2, H3, H4}, since H2 ≻ H1, and both H2 ≻ H5 and H4 ≻ H5 hold

◼ The algorithms considered so far are unable to exploit the peculiarities of
low-cardinality domains

45

Hotel Price Stars WiFi Parking Air Cond.

H1 35 € * ✓

H2 30 € ** ✓

H3 60 € ** ✓

H4 40 € *** ✓ ✓

H5 40 € ** ✓

LS-B: all attributes have low cardinality

◼ The LS-B algorithm [MPJ07] assumes that all attributes have low cardinality

◼ Without loss of generality, we consider m Boolean attributes

◼ The corresponding Boolean lattice consist of 2m elements, which can be ordered
considering that “1 is always better than 0”

◼ The idea of LS-B is that only tuples in the “best classes” in the lattice are part of
the skyline

46

(1,1,0)

(1,0,0)

(0,0,0)

(1,0,1)

(0,1,0) (0,0,1)

(0,1,1)

(1,1,1)

http://www-db.disi.unibo.it/courses/TBD/papers/MPJ07.pdf

The LS-B algorithm

◼ LS-B operates in two phases:
Phase 1: read all tuples and mark as present (p) the corresponding

elements in the lattice; others remain not present (np).

At the end, determine those p elements that are also dominated (d)

Phase 2: read again all tuples and output those whose lattice element is
undominated

47

Hotel WiFi Parking Air Cond.

H1

H2 ✓

H3 ✓

H4 ✓ ✓

H5 ✓

(1,1,0)

(1,0,0)

(0,0,0)

(1,0,1)

(0,1,0) (0,0,1)

(0,1,1)

(1,1,1) np

np

p

ppnp

p np (1,1,0)

(1,0,0)

(0,0,0)

(1,0,1)

(0,1,0) (0,0,1)

(0,1,1)

(1,1,1) np

np

p,d

pp,dnp

p np

LS: all attributes but one have low cardinality

◼ The LS algorithm [MPJ07] extends LS-B by allowing the presence of an attribute
A0 whose domain can be arbitrarily large (e.g., Price)

◼ In the 1st phase LS also computes the locally optimal value (lov) of A0 for each
present element (e.g., the lowest price). An element e is now dominated if there
is a better lattice element e’ whose lov is no worse than e.lov

◼ In the 2nd phase, a tuple t whose element e is undominated can be pruned iff
t.A0 is worse that e.lov

◼ No simple efficient extension is known when more that one attribute has a large
domain (for each element we shoud compute a “local” skyline…)

48

Hotel Price WiFi Parking Air Cond.

H1 35 €

H2 30 € ✓

H3 60 € ✓

H4 40 € ✓ ✓

H5 40 € ✓

(1,1,0)

(1,0,0)

(0,0,0)

(1,0,1)

(0,1,0) (0,0,1)

(0,1,1)

(1,1,1) np

np

p,d

ppnp

p np
40

6030

35

Variants of skyline queries

◼ [PTF+03] introduces some variants of basic skyline queries:

◼ Many other skyline-related problems have been proposed/studied so far, e.g.:
◼ Reverse skyline queries: given a query point q, which are the tuples t such

that q is in the skyline computed with respect to t (when t is the target)?

◼ Representative skyline points: which are the k “most representative”
points in the skyline?

◼ See [CCM13] for a recent survey on the subject

49

1. Ranked skyline queries
ranking within the skyline with a
scoring function

2. Constrained skyline queries
limiting the search region

3. K-dominating queries
the k tuples that dominate the largest
number of other tuples

Dimitris Papadias

http://www-db.disi.unibo.it/courses/TBD/papers/CCM13.pdf

Summary on skyline queries

◼ Skyline queries represent a valid alternative to top-k queries, since they do
not require any choice of scoring functions and weights

◼ The skyline of a relation R, Sky(R), contains all and only the undominated
tuples in R, i.e., those tuples representing “interesting alternatives” to
consider

◼ Computing Sky(R) can rely on both sequential and index-based algorithms

◼ The BNL algorithm works by allocating a main-memory window, and then
comparing incoming tuples with those in the window

◼ SFS pre-sorts data yielding a topological sort that introduces several benefits
compared to BNL

◼ SaLSa adds a stop condition, that avoids reading all the data

◼ BBS is a provably I/O-optimal algorithm for computing Sky(R) using an R-tree

◼ LS-B and LS are designed to work with low-cardinality domains (and at most
one large attribute domain)

50

References

[BCP06] Ilaria Bartolini, Paolo Ciaccia, Marco Patella: SaLSa: computing the skyline
without scanning the whole sky. CIKM 2006: 405-414

[BCP08] Ilaria Bartolini, Paolo Ciaccia, Marco Patella: Efficient sort-based skyline
evaluation. ACM Trans. Database Syst. 33(4): (2008)

[BKS01] Stephan Börzsönyi, Donald Kossmann, Konrad Stocker: The Skyline Operator.
ICDE 2001: 421-430

[CCM13] Jan Chomicki, Paolo Ciaccia, Niccolò Meneghetti: Skyline Queries, Front and
Back. SIGMOD RECORD 2013: 6-18

[CGG+03] Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang: Skyline with
Presorting. ICDE 2003: 717-719

[KRR02] Donald Kossmann, Frank Ramsak, Steffen Rost: Shooting Stars in the Sky: An
Online Algorithm for Skyline Queries. VLDB 2002: 275-286

[MPJ07] Michael D. Morse, Jignesh M. Patel, H. V. Jagadish: Efficient Skyline
Computation over Low-Cardinality Domains. VLDB 2007: 267-278

[PTF+03] Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger: An Optimal and
Progressive Algorithm for Skyline Queries. SIGMOD Conference 2003: 467-478

51

http://www-db.disi.unibo.it/courses/TBD/papers/BCP06.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/BCP08.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/CCM13.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/CGG+03.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/KRR02.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/MPJ07.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/PTF+03.pdf

