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Limits of scoring functions

◼ Although scoring functions are widely used to rank a set of objects, it is
nowadays recognized that they have some major problems: 

◼ They have a limited expressive power, i.e., they can only capture those
user preferences that “translates into numbers”, which is not always the 
case (or, at least, doing so is not so natural)

“I prefer having white wine with fish and red wine with meat”

◼ Deciding on the “best” scoring function to use and/or the specific weights
can be hardly left to the final user, especially when there are several
ranking attributes

◼ In this set of slides we will study an alternative to scoring functions, 
the so-called skyline queries, that have relevant practical applicability, 
and also represent a major step towards more general (i.e., powerful) 
preference models
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The concept of tuple dominance

◼ A fundamental concept underlying the definition of skyline queries is that of

◼ The generalization to the case when the values of some attributes need to 
be maximized and to arbitrary target points is immediate
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Tuple dominance:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes, 
assume without loss of generality that on each Ai lower values are better.

A tuple t dominates tuple t’ with respect to A = {A1,A2,…,Am}, written t ≻A t’ or 
simply t ≻ t’, iff:

j = 1,…,m: t.Aj  t’.Aj  j: t.Aj < t’.Aj

that is:

• t is no worse than t’ on all the attributes, and 

• strictly better than t’ for at least one attribute

Notice that it can well be the case that neither t ≻ t’ nor t’ ≻ t hold



Tuple dominance: example (1)

◼ Both Points and Rebounds are to be maximized, thus:
◼ Tracy McGrady dominates all players but Yao Ming and Shaquille O’Neal

◼ Shaquille O’Neal dominates only Yao Ming and Steve Nash

◼ Yao Ming dominates only Steve Nash

◼ Steve Nash does not dominate anyone

◼ …
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Name Points Rebounds …

Shaquille O'Neal 1669 760 …

Tracy McGrady 2003 484 …

Kobe Bryant 1819 392 …

Yao Ming 1465 669 …

Dwyane Wade 1854 397 …

Steve Nash 1165 249 …

… … … …



Tuple dominance: example (2)

◼ Both attributes are to be minimized, thus:
◼ Car C6 dominate C1 (same mileage, lower price), C3, C4, and C7

◼ Car C5 dominates C1, C2, C4, C7, C8, and C9

◼ Car C11 dominates …

◼ … 
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Dominance region

◼ The dominance region of a tuple t is the set of points in Dom(A) that are 
dominated by t

◼ Similarly, the anti-dominance region of t is the set of points in Dom(A) that 
dominate t
◼ Clearly, t ≻ t’ iff t’ lies in the dominance region of t (and t in the anti-

dominance region of t’) 
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The dominance graph

◼ We omit transitive dominance relationships from the graph (e.g., C6 ≻ C7)
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Skyline queries

◼ Equivalently, t  Sky(R) iff no point in R lies in the anti-dominance region of t

◼ In computational geometry, skyline queries are also known as the “maximal 
vectors problem”; for multiple criteria optimization problems, their result is a set 
of so-called Pareto optimal solutions

8.1

Skyline of a relation [BKS01]:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes, the 
skyline of R with respect to A = {A1,A2,…,Am}, denoted SkyA(R) or simply Sky(R), 
is the set of undominated tuples in R:

Sky(R) = {t | t  R, ∄ t’  R: t’ ≻ t}

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf


Skyline queries

◼ Equivalently, t  Sky(R) iff no point in R lies in the anti-dominance region of t

◼ In computational geometry, skyline queries are also known as the “maximal 
vectors problem”; for multiple criteria optimization problems, their result is a set 
of so-called Pareto optimal solutions

8.2

Skyline of a relation [BKS01]:
Given a relation R(A1,A2,…,Am,…), in which the Ai’s are ranking attributes, the 
skyline of R with respect to A = {A1,A2,…,Am}, denoted SkyA(R) or simply Sky(R), 
is the set of undominated tuples in R:

Sky(R) = {t | t  R, ∄ t’  R: t’ ≻ t}

The Skyline of Manhattan, for instance, can be 

computed as the set of buildings which are high 

and close to the Hudson river. 

In other words, a building dominates another 

building if it is higher, closer to the river, and 

has the same x position [BKS01]

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf


A skyline example

◼ In the attribute space…
◼ The “skyline profile” shows the 

union of the dominance regions 
of skyline points
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◼ In the score space…
◼ No matter how we define 

scores, the skyline doesn’t 
change!

◼ I.e., the skyline is insensitive to 
any “stretching” of coordinates



What’s so special about skyline queries?

◼ Let MD be the set of all monotone distance functions 

◼ We have the following result relating skyline and 1-NN queries, when both have 
the same target point q:

◼ This is to say that:
1) If t is the (unique) 1-NN for a monotone distance function d, 

then t is part of the skyline

2) Conversely, if t is a skyline point, then there exists a monotone distance 
function d that is minimized by t only

◼ For this reason, skyline points are also sometimes called “potential NN’s”

◼ Clearly, the same result holds for monotone scoring functions

◼ Note: a non-unique 1-NN is not necessarily undominated (why?)
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t  Sky(R)  d  MD:  t’  R, t’  t: d(t,q) < d(t’,q)



Proof

1) If t is the unique 1-NN for a monotone distance function d, then t is part of the 
skyline

◼ By negating the conclusion. 
Assume t is not part of the skyline, i.e., there exists a tuple t’ that dominates t. 
For any monotone distance function d it is d(t’,q) ≤ d(t,q), a contradiction.

2) If t is a skyline point, then there exists a monotone distance function that is
minimized by t only

◼ The proof is constructive. Without loss of generality we can take q = 0, and 
assume that all attribute values are strictly positive 

Consider the weighted L,W distance with weights wi = 1/t.Ai, i=1,…,m.

It is L,W(t,0) = maxi{wi*t.Ai} = 1.

For any other point t’ it is is L,W(t’,0) = maxi{wi*t’.Ai} = maxi{t’.Ai/t.Ai} > 1, since
t is a skyline point 

11.1



Proof

1) If t is the unique 1-NN for a monotone distance function d, then t is part of the 
skyline

◼ By negating the conclusion. 
Assume t is not part of the skyline, i.e., there exists a tuple t’ that dominates t. 
For any monotone distance function d it is d(t’,q) ≤ d(t,q), a contradiction.

2) If t is a skyline point, then there exists a monotone distance function that is
minimized by t only

◼ The proof is constructive. Without loss of generality we can take q = 0, and 
assume that all attribute values are strictly positive 

Consider the weighted L,W distance with weights wi = 1/t.Ai, i=1,…,m.

It is L,W(t,0) = maxi{wi*t.Ai} = 1.

For any other point t’ it is is L,W(t’,0) = maxi{wi*t’.Ai} = maxi{t’.Ai/t.Ai} > 1, since
t is a skyline point 
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“Accessibility” of skyline points

12.1

Name Price Stars

Jolly 10 1

Rome 60 5

Paradise 40 3

S = Ws * Stars – Wp * Price
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“Accessibility” of skyline points

12.2
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◼ For no weights combination Paradise is the top-1 hotel

◼ Similar problems with:
◼ Arbitrary values of k and/or

◼ Almost all scoring functions
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Skylines do not admit any distance function

◼ The skyline of R does not correspond to any k-NN (or top-k) result, i.e: 

Given a schema R(A1,…,Am,…) there is no distance function d 
(equivalently, scoring function S) that, on all possible instances of R, yields 
in the first  k positions the skyline points
◼ Note that here we allow k to be variable, so as to match the actual 

number of skyline points on each instance of R

Proof: it is Sky(R’) = {t1,t4}, thus it has to be: {S(t1), S(t4)} > S(t2).

On the other hand, it is Sky(R”) = {t2,t3}, thus: {S(t2),S(t3)} > S(t4), a 
contradiction 
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TID p1 p2

t1 0.9 0.6

t2 0.8 0.4

t4 0.5 0.7

TID p1 p2

t2 0.8 0.4

t3 0.7 0.8

t4 0.5 0.7

R’ R’’



Ranking with skylines

◼ Ranking of tuples can be easily obtained by iterating the skyline operator

◼ Define:

◼ Thus Sky0(R) are the “top” tuples, Sky1(R) the “2nd” choices, and so on
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Sky0(R) = Sky(R) 
Sky1(R) = Sky(R – Sky0(R))
Sky2(R) = Sky(R – Sky0(R) – Sky1(R))
…

C5

C2

C3 C1 C4

C6

C8

C7

C10C11C9 Sky0(R) = {C5,C6,C9,C10,C11}

Sky1(R) = {C1,C3,C4,C8}

Sky2(R) = {C2,C7}



◼ The issue of efficiently evaluating a skyline query has been largely investigated, 
and many algorithms introduced so far

◼ A basic reason is that the problem is “more difficult” than top-k queries, since it 
has a worst-case complexity of (N2) for a DB with N objects

◼ What we see are some algorithms that follow one of the two basic approaches:

Generic: 
it computes the skyline without any auxiliary access method (indexes) 
◼ Thus, the input relation can also be the output of some other operation 

(join, group by, etc.)

Index-based: 
it is assumed that an index is available

15

Evaluation of skyline queries



The naïve Nested-Loops (NL) algorithm

◼ The simplest (and very inefficient!) way to compute the skyline of R is to 
compare each tuple with all the others
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ALGORITHM NL (nested-loops)

Input: a dataset R, a set of attributes A inducing ≻

Output: Sky(R), the skyline of R with respect to A

1. Sky(R) := ;

2. for all tuples t in R:

3. undominated := true;

4. for all tuples t’ in R:

5. if t’ ≻ t then: {undominated := false; break}

6. if undominated then: Sky(R) := Sky(R)  {t};

7. return Sky(R);

8. end.



NL: an example

◼ The origin is the target
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The Block-Nested-Loops (BNL) algorithm

◼ The BNL algorithm [BKS01] improves over NL by immediately discarding all
tuples that are dominated by at least one other tuple

◼ Thus, it also avoids comparing twice the same pair of tuples (as NL does)

◼ BNL allocates a buffer (window) W in main memory, whose size is a design 
parameter, and sequentially reads the data file

◼ Every new tuple t that is read from the data file is compared with only those
tuples that are currently in W

18

The BNL algorithm has been proposed in 
[BKS01] for skyline queries, 
however its applicability is far more general!

Donald Kossmann

http://www-db.disi.unibo.it/courses/TBD/papers/BKS01.pdf


The logic of the BNL algorithm

◼ When reading a new tuple t, three cases are possible:

◼ When all tuples have been processed, if F is empty the algorithm stops, 
otherwise a new iteration is started by taking F as the new input stream

◼ The tuples that were inserted in W when F was empty can be immediately 
output, since they have been compared with all other tuples

◼ The others in W can be output during the next iteration; a tuple t can be 
output when a tuple t’ is found in F that followed t in the sequential order
◼ For this, a timestamp (counter) is attached to each tuple  
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1) If some tuple t’ in W dominates t, then t is immediately discarded
2) If t dominates some tuple t’ in W, all such tuples are removed from W 

and t is inserted into W
3) If none of the above two cases holds, then t is inserted into W. 

However, if no space in W is left, then t is written to a temporary file F



BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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BNL: an example

◼ Assume |W| = 2 
and the origin as the target
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21.1

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3
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21.2

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example
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21.3

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example
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21.4

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example
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21.5

Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example
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Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3
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Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3
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Restaurant Price Rating

FreshFish 70 2

OceanView 30 3

VealHere 50 7

Sunset 40 6

Country 48 5

SteakHouse 60 3

BNL: another example

Restaurant …
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OceanView
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BNL: some comments

◼ Experimental results in [BKS01] show that BNL is CPU-bound and that 
its performance deteriorates if W grows
◼ Since with larger W BNL executes more comparisons

◼ On the other hand, BNL has a relatively low I/O cost

◼ Performance is also negatively affected by the number of skyline points

◼ The skyline cardinality depends on the number of attributes and on their 
correlation 
◼ Negatively (or anti-)correlated attributes, like Price and Mileage, lead to 

larger skylines

◼ [BKS01] also introduces some variants of BNL, among which BNL-sol, that 
manages W as a self-organizing list
◼ The idea is to first compare incoming objects with those in W (called “killer” 

objects) that have been found to dominate several other objects

… and another algorithm (D&C) based on a “divide-and-conquer” approach
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BNL: setting |W| = 1

◼ |W| = 1 yields the minimum number of comparisons for a given input order 
(equal to those of |W| =2 in this example)
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BNL: datasets and experiments (1) [BKS01]

◼ Synthetic data (uniform independent, correlated and anti-correlated)

◼ In the figure: 1000 points (skyline points are in bold)
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BNL: datasets and experiments (2) [BKS01]
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▪ RDBMS: the NL algorithm 
implemented as a correlated
subquery: 

“t is part of the skyline if
NOT EXISTS(…)”

In this figure:
Independent datasets

dimensionality  [2,10] 
window = 1Mbyte

cardinality N=105 tuples 

Sun Ultra, 333MHz CPU 
128Mbytes RAM

N=105 tuples 



SFS: Sort-Filter-Skyline [CGG+03]

◼ SFS aims to reduce the overall number of comparisons

◼ To this end, it first performs a topological sort of the input data, which 
respects the skyline preference criteria

◼ Here the key observation is:

If the input is topologically sorted, 
then a new read tuple cannot dominate 

any previously read tuple! (t > t’   t ⊁ t’)

26

Topological sort:

Given ≻, a topological sort of R is a complete (no ties) ordering < of the tuples in 
R such that:

t ≻ t’   t < t’ 

i.e., if t dominates t’, then t precedes t’ in the complete ordering

http://www-db.disi.unibo.it/courses/TBD/papers/CGG+03.pdf


Topological sort: example

◼ For the data in the figure, possible results of a topological sort are:

◼ In practice, a topological sort is obtained by ordering data using a monotone 
distance (scoring) function compatible with the skyline criteria
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SFS: an example

◼ Assume |W| = 2 
and the origin as the target
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SFS: an example

◼ Assume |W| = 2 
and the origin as the target
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SFS: an example

◼ Assume |W| = 2 
and the origin as the target
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SFS: an example

◼ Assume |W| = 2 
and the origin as the target
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SFS: further properties

◼ At the end of each iteration all the tuples in W can be output
◼ since no tuple in W can be discarded by a subsequent tuple

◼ The number of iterations is therefore the minimum one: |Sky(R)|/|W|
◼ In contrast, BNL has no such guarantee

◼ SFS can return a tuple as soon as it is inserted in the window
◼ Therefore, in W one can just store the skyiline attribute values, which 

leads to save (much) space

◼ Two non-skyline tuples will never be compared
◼ Since in W only skyline tuples are present 

◼ Managing the window data structure is now much easier
◼ Since only insertions are to be supported

◼ No deletion of specific tuples, thus no need to manage empty slots
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Experimental results (from [CGG+03])

◼ Data sorted using the “entropy” distance function:

d(t,0) =  - i=1,m ln(2 - t.Ai)  

= - ln(exp(i=1,m ln(2 - t.Ai))) = - ln (  i=1,m(2-t.Ai) )

which yields the same ordering as 2m -  i=1,m(2-t.Ai)  (  [0,2m – 1])
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BNL w/RE: input sorted using 
the “reverse” entropy

Independent dataset
cardinality N=106 tuples 
dimensionality = 7 
window = # 4Kbyte pages
AMD Athlon, 900MHz CPU 
384Mbytes RAM



SaLSa [BCP06,BCP08]

◼ SaLSa (Sort and Limit Skyline algorithm) extends the ideas of SFS by 
observing that, when data are topologically sorted,
it is possible to avoid reading all the input tuples

31

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

Data sorted using sum:
t.Price + t.Mileage

After reading C6 (or C10), 
whose sum is 60, 
we know that no further skyline 
point exists

… however using all the current 
points in Sky(R) to this purpose 
is costly:
The problem is NP-hard [BCP08]

And?

http://www-db.disi.unibo.it/courses/TBD/papers/BCP06.pdf
http://www-db.disi.unibo.it/courses/TBD/papers/BCP08.pdf


The “stop-point”

◼ SaLSa makes use of a single skyline tuple, the so-called stop-point , tstop, to 
determine when execution can be halted

◼ In this case it is sufficient to check that what is still to be read lies in the 
dominance region of tstop
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Choosing the stop-point

◼ For symmetric distance (scoring) functions, and assuming that on all 
coordinates the ranges are the same ([0,1], [0,50], etc.) it is possible to 
prove that the optimal choice for the stop-point is given by the rule:

tstop = argmintSKY(R) {maxi{t.Ai}}

that is, the tuple for which the maximum coordinate value is minimum

◼ Note that this holds for any symmetric distance function
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tstop Price Mileage
halt when sum 

≥

C1 25 10 75

C2 20 30 80

C4 5 40 90



Optimally ordering the points

◼ Among the many alternatives to sort the input data, SaLSa uses a 
provably optimal criterion, i.e., on each instance ordering data using 
another (symmetric) function cannot discard more points

◼ The optimal criterion is called minC (minimum coordinate), that is, for each 
tuple t the value of mini{t.Ai} is used

◼ In case of ties, the secondary criterion
“sum” is used

34

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50

M
il
e

a
g

e

Price

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10
minC sum

C4 5

C1 10

C3 15 40

C6 15 60

C10 15 60

C2 20

C5 25

C9 30

C7 35

C8 45



Stopping with minC

◼ The stop-point is C1, for which it is maxi{C1.Ai} = 25

◼ Thus, as soon as it is minC ≥ 25 SaLSa can be halted

◼ The general stop condition is therefore:
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Experimental results (from [BCP08]) (1)

◼ FP = fraction of fetched points, independent datasets (vol = SFS)

36

cardinality N  [105,5*105] tuples 
dimensionality = 4 

cardinality N=5*105 tuples 
dimensionality  [2,6] 



Experimental results (from [BCP08]) (2)

◼ DT = no. of comparisons (dominance tests), normalized to the cardinality of 
the dataset
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cardinality N  [105,5*105] tuples 
dimensionality = 4 

cardinality N=5*106 tuples 
dimensionality  [2,6] 



Experimental results (from [BCP08]) (3)

◼ Mixed dataset = half points are anti-correlated, others are dominated

38

cardinality N = 105 tuples 
dimensionality = 4 
Data stored and sorted 
in IBM DB2
Pentium IV, 3.4GHz CPU 
512Mbytes RAM



Computing the skyline with R-trees

◼ If we have an index over the ranking attributes, we can use it to avoid
scanning the whole DB

◼ The BBS (Branch and Bound Skyline) algorithm [PTF+03] is reminiscent of 
kNNOptimal, in that it accesses index nodes by increasing values of MinDist
(in the following the query/target point coincides with the origin) 
and of next-NN, in that the queue PQ keeps both tuples and nodes
◼ For computational economy, [PTF+03] evaluates distances using L1

(Manhattan distance)

◼ The basic objective of the algorithm is to avoid accessing index nodes that
cannot contain any skyline object

◼ To this end it exploits the following simple observation:

◼ It also exploits the (now well-known) fact that if L1(t’,0) ≥ L1(t,0) then t’ ⊁ t

◼ PQ also stores key(N), i.e., the MBR of N, in order to check if N is dominated by 
some tuple t
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If the region Reg(N) of node N completely lies in the 
dominance region of a tuple t, then N cannot contain 
any skyline point (“t dominates N”)

t

N

http://www-db.disi.unibo.it/courses/TBD/papers/PTF+03.pdf


The BBS algorithm
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Input: index tree with root node RN

Output: Sky, the skyline of the indexed data

1. Initialize PQ with [ptr(RN),Dom(R),0]; // starts from the root node

2. Sky := ; // the Skyline is initially empty

3. while PQ ≠ : // until the queue is not empty…

4. [ptr(Elem), key(Elem), dMIN(0,Reg(Elem))] := DEQUEUE(PQ); 

5. If no point in Sky dominates Elem then:

6. if Elem is a tuple t then: Sky := Sky  {t} 

7. else: { Read(Elem); // …node Elem might contain skyline points

8. if Elem is a leaf then: { for each tuple t in Elem:

9. if no tuple in Sky dominates t then:

10. ENQUEUE(PQ,[ptr(t), key(t), L1(0,key(t))]) }

11. else: { for each child node Nc of Elem:

12. if no point in Sky dominates Nc then:

13. ENQUEUE(PQ,[ptr(Nc), key(Nc), dMIN(0,Reg(Nc))]) }};

14. return Sky;

15. end.



BBS: An example (1/2)

◼ distance: L1
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BBS: An example (2/2)

◼ The example clearly shows why a tuple currently undominated, such as B, 
which is stored in N3, needs to be inserted into the queue
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Action PQ

Read(RN) (N1,5) (N2,7)

Read(N1) (N3,6) (N4,7) (N2,7)

Read(N3) (A,7) (N4,7) (N2,7) (B,10)

Return(A) (N4,7) (N2,7) (B,10)

Read(N4) (C,7) (N2,7) (B,10)

Return(C) (N2,7) (B,10)

Read(N2) (N5,7) (B,10)

Read(N5) (F,8) (G,9) (B,10)

Return(F) (G,9) (B,10)

Return(G) (B,10)
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▪ NN is an algorithm from 
[KRR02], also based on R-trees

Experimental setup
Independent (uniform) and 
anti-correlated datasets

dimensionality  [2,5] 
cardinality N=1M tuples 

Node size = 4Kbytes 
(C = 204 when d=2;
C = 94  when d=5) 

Pentium 4, 2.4GHz CPU 
512Mbytes RAM

Experimental results (from [PTF+03])

http://www-db.disi.unibo.it/courses/TBD/papers/KRR02.pdf


Correctness and optimality of BBS

◼ The correctness of BBS is easy to prove, since the algorithm only discards nodes 
that are found to be dominated by some point in the Skyline

◼ As SFS and SaLSa, when a tuple t is inserted into Sky, then t is guaranteed to be 
part of the final result
◼ This is a direct consequence of accessing nodes by increasing values of 

MinDist and of inserting a tuple into Sky only when it becomes the first 
element of PQ

◼ Optimality of BBS (which we do not formally prove) means: 
BBS only reads those nodes that intersect  the “Skyline search region”; this is 
the complement of the union of the dominance regions of skyline points
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Skylines for low-cardinality domains

◼ In many scenarios, many (possibly all) the attributes of interest can assume only 
one out of a few values (e.g., movies’ ratings, presence/absence of a feature, 
“predicate preferences”, domain discretization)

◼ Sky(R) = {H2, H3, H4}, since H2 ≻ H1, and both H2 ≻ H5 and H4 ≻ H5 hold

◼ The algorithms considered so far are unable to exploit the peculiarities of 
low-cardinality domains
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Hotel Price Stars WiFi Parking Air Cond.

H1 35 € * ✓

H2 30 € ** ✓

H3 60 € ** ✓

H4 40 € *** ✓ ✓

H5 40 € ** ✓



LS-B: all attributes have low cardinality

◼ The LS-B algorithm [MPJ07] assumes that all attributes have low cardinality

◼ Without loss of generality, we consider m Boolean attributes

◼ The corresponding Boolean lattice consist of 2m elements, which can be ordered
considering that “1 is always better than 0”

◼ The idea of LS-B is that only tuples in the “best classes” in the lattice are part of 
the skyline

46

(1,1,0)

(1,0,0)

(0,0,0)

(1,0,1)

(0,1,0) (0,0,1)

(0,1,1)

(1,1,1)

http://www-db.disi.unibo.it/courses/TBD/papers/MPJ07.pdf


The LS-B algorithm

◼ LS-B operates in two phases:
Phase 1: read all tuples and mark as present (p) the corresponding 

elements in the lattice; others remain not present (np).

At the end, determine those p elements that are also dominated (d)

Phase 2: read again all tuples and output those whose lattice element is 
undominated

47

Hotel WiFi Parking Air Cond.
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LS: all attributes but one have low cardinality

◼ The LS algorithm [MPJ07] extends LS-B by allowing the presence of an attribute 
A0 whose domain can be arbitrarily large (e.g., Price)

◼ In the 1st phase LS also computes the locally optimal value (lov) of A0 for each 
present element (e.g., the lowest price). An element e is now dominated if there 
is a better lattice element e’ whose lov is no worse than e.lov

◼ In the 2nd phase, a tuple t whose element e is undominated can be pruned iff 
t.A0 is worse that e.lov

◼ No simple efficient extension is known when more that one attribute has a large 
domain (for each element we shoud compute a “local” skyline…)
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Variants of skyline queries

◼ [PTF+03] introduces some variants of basic skyline queries:

◼ Many other skyline-related problems have been proposed/studied so far, e.g.:
◼ Reverse skyline queries: given a query point q, which are the tuples t such

that q is in the skyline computed with respect to t (when t is the target)?

◼ Representative skyline points: which are the k “most representative” 
points in the skyline?

◼ See [CCM13] for a recent survey on the subject
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1. Ranked skyline queries
ranking within the skyline with a 
scoring function

2. Constrained skyline queries
limiting the search region

3. K-dominating queries
the k tuples that dominate the largest 
number of other tuples

Dimitris Papadias

http://www-db.disi.unibo.it/courses/TBD/papers/CCM13.pdf


Summary on skyline queries

◼ Skyline queries represent a valid alternative to top-k queries, since they do 
not require any choice of scoring functions and weights

◼ The skyline of a relation R, Sky(R), contains all and only the undominated 
tuples in R, i.e., those tuples representing “interesting alternatives” to 
consider

◼ Computing Sky(R) can rely on both sequential and index-based algorithms

◼ The BNL algorithm works by allocating a main-memory window, and then 
comparing incoming tuples with those in the window

◼ SFS pre-sorts data yielding a topological sort that introduces several benefits 
compared to BNL

◼ SaLSa adds a stop condition, that avoids reading all the data

◼ BBS is a provably I/O-optimal algorithm for computing Sky(R) using an R-tree

◼ LS-B and LS are designed to work with low-cardinality domains (and at most 
one large attribute domain)
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